Moduli of Complexes on a Proper Morphism
نویسنده
چکیده
Given a proper morphism X → S, we show that a large class of objects in the derived category of X naturally form an Artin stack locally of finite presentation over S. This class includes S-flat coherent sheaves and, more generally, contains the collection of all S-flat objects which can appear in the heart of a reasonable sheaf of t-structures on X. In this sense, this is the Mother of all Moduli Spaces (of sheaves). The proof proceeds by studying the finite presentation properties, deformation theory, and Grothendieck existence theorem for objects in the derived category, and then applying Artin’s representability theorem.
منابع مشابه
5 Moduli of complexes on a proper morphism or The mother of all moduli spaces ( of sheaves )
3 Deformation theory of complexes 8 3.1 Statement of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Complexes over an affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملModuli of Parabolic Connections on a Curve and Riemann-hilbert Correspondence
Let (C, t) (t = (t1, . . . , tn)) be an n-pointed smooth projective curve of genus g and take λ = (λ (i) j ) ∈ C nr such that ∑ i,j λ (i) j = d ∈ Z. For a weight α, let M α C (t,λ) be the moduli space of α-stable (t,λ)-parabolic connections on C and for a certain a ∈ C let RPr(C, t)a be the moduli space of representations of the fundamental group π1(C \ {t1, . . . , tn}, ∗) with the local monod...
متن کاملChange of Coefficients for Drinfeld Modules, Shtuka, and Abelian Sheaves
We study the passage from Drinfeld-A-modules to Drinfeld-A-modules for a given finite flat inclusion A ⊂ A. We show that this defines a morphism from the moduli space of Drinfeld-A-modules to the moduli space of Drinfeld-A-modules which is proper but in general not representable. For Drinfeld-Anderson shtuka and abelian sheaves instead of Drinfeld modules we obtain the same results. Mathematics...
متن کامل1-point Gromov-witten Invariants of the Moduli Spaces of Sheaves over the Projective Plane
The Gieseker-Uhlenbeck morphism maps the Gieseker moduli space of stable rank-2 sheaves on a smooth projective surface to the Uhlenbeck compactification, and is a generalization of the Hilbert-Chow morphism for Hilbert schemes of points. When the surface is the complex projective plane, we determine all the 1-point genus-0 Gromov-Witten invariants extremal with respect to the Gieseker-Uhlenbeck...
متن کاملMorphisms of Cohomological Field Theories
We introduce a notion of morphism of CohFT’s, on the basis of the analogy with A∞ morphisms, and discuss the relationship with morphisms of F -manifolds introduced by Manin and Hertling [5]. The structure maps of a morphism of CohFT’s have as input a cohomology class on the moduli space of scaled affine lines (complexified multiplihedron) studied in Ma’u-Woodward [9]. The main result is a compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005